Integral and fractional equations, positive solutions, and Schaefer's fixed point theorem
نویسندگان
چکیده
منابع مشابه
Existence of Solutions for some Nonlinear Volterra Integral Equations via Petryshyn's Fixed Point Theorem
In this paper, we study the existence of solutions of some nonlinear Volterra integral equations by using the techniques of measures of noncompactness and the Petryshyn's fixed point theorem in Banach space. We also present some examples of the integral equation to confirm the efficiency of our results.
متن کاملPositive Solutions for Fractional Differential Equations from Real Estate Asset Securitization via New Fixed Point Theorem
and Applied Analysis 3 Remark 2.3. If x, y : 0, ∞ → R with order α > 0, then Dt ( x t y t ) Dtx t Dty t . 2.3 Proposition 2.4 see 18, 19 . 1 If x ∈ L1 0, 1 , ν > σ > 0, then IIx t I x t , DtIx t Iν−σx t , DtIx t x t . 2.4 2 If ν > 0, σ > 0, then Dttσ−1 Γ σ Γ σ − ν t σ−ν−1. 2.5 Proposition 2.5 see 18, 19 . Let α > 0, and f x is integrable, then IDtf x f x c1xα−1 c2xα−2 · · · cnxα−n, 2.6 where ci...
متن کاملNew results for fractional evolution equations using Banach fixed point theorem
In this paper, we study the existence of solutions for fractional evolution equations with nonlocalconditions. These results are obtained using Banach contraction xed point theorem. Other resultsare also presented using Krasnoselskii theorem.
متن کاملA strong convergence theorem for solutions of zero point problems and fixed point problems
Zero point problems of the sum of two monotone mappings and fixed point problems of a strictly pseudocontractive mapping are investigated. A strong convergence theorem for the common solutions of the problems is established in the framework of Hilbert spaces.
متن کاملTransversal spaces and common fixed point Theorem
In this paper we formulate and prove some xed and common xed pointTheorems for self-mappings dened on complete lower Transversal functionalprobabilistic spaces.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Opuscula Mathematica
سال: 2016
ISSN: 1232-9274
DOI: 10.7494/opmath.2016.36.4.431